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Thermodynamically consistent thermal energy equation

for an adsorbent/fluid system

Wojcik et al. [1] examined, among other things,

thermodynamic consistency of some equations express-

ing energy balance. The authors consider their Eq. (1)

taken from the literature to be thermodynamically in-

consistent because of the boundary conditions in Eq. (3).

In the conclusion they seem to prefer Eq. (4) borrowed

from the Thermodynamics of Irreversible Processes.

The discussion of Wojcik et al. is both interesting and

important, but, as it seems to me, needs to be supple-

mented. It is the purpose of this letter to show the bal-

ance Eqs. (1) and (4) to immediately follow from a more

complete expression by neglecting particular terms.

Consequently, these equations are equally inconsistent

in a qualitative sense. However, the quantitative treat-

ment provided by the authors [1] is useful in several

instances, e.g. if we are to simplify the energy balance.

Assuming each phase to occupy the whole domain

(overlapping continua), we start our discussion 1 by

writing the local energy balance for an adsorbent/fluid

system in the form
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where qk represents the partial mass density and hk the
specific enthalpy of the phase k contained in the control

volume, and eQ stands as a heat source for possible

thermal effects arising from interactions of the fluid with

the adsorbent. However, we will neglect eQ in the present

discussion.

The energy flux ~qq may be written as

~qq ¼ �k grad T þ
X
k

ðhk~//kÞ ð2Þ

where k represents an apparent thermal conductivity of

the system, T the temperature, and the product hk~//k the

enthalpy flux at the boundary of the control volume, ~//
being the mass flux.

Combining Eqs. (1) and (2) givesX
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The system considered consists of three phases: bulk

fluid (liquid or gas, G), adsorbed fluid (film, F) and

adsorbent (solid, S). In what follows the adsorbent is

assumed to possess a constant density and to be fixed

in the coordinate system, thus ~//S ¼ 0 and oqS=ot ¼ 0.

Then, Eq. (3) gives
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In the case that the fluid phases do not undergo any

phase change, their continuity equations

oqG

ot
þ div ~//G ¼ 0; ð5Þ

oqF

ot
þ div ~//F ¼ 0 ð6Þ

simplify Eq. (4) giving
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¼ divðk grad T Þ � ð~//G grad hG

þ~//F grad hFÞ: ð7Þ

However, when a phase change is taking place, the

amount of one phase increases at the expense of the

other one. This interaction can be taken into account by

introducing a source term e, thus

oqG

ot
þ div ~//G ¼ �eG; ð8Þ

oqF

ot
þ div ~//F ¼ þeF; ð9Þ

if a phase change occurs from the gas towards the film

(adsorption).
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1 Supposing the literature in the field considered was

sufficiently studied by Wojcik et al., I have not consulted any

further paper. Therefore it is not excluded that similar consid-

erations already exist in the literature.
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Since the mass of one phase increases while the mass

of the other phase decreases by the same amount, it is

eG ¼ eF ¼ e. Furthermore, as the quantity e represents

the mass flow rate per unit volume due to phase change,

we may set it equal to the time derivative of the film

density, e ¼ oqF=ot. This step becomes obvious if we, for
instance, write the continuity equation for the fluid

(both phases) of a system containing an evaporating

liquid droplet (or a droplet growing by condensation)

that is completely enclosed by the vapour, thereby as-

suming the control surface not to intersect the interface.

Thus, Eq. (4) takes the form

X
k

qk
ohk
ot

¼ divðk grad T Þ � ð~//G grad hG

þ~//F grad hFÞ þ ðhG � hFÞ
oqF

ot
ð10Þ

expressing a local energy balance for a system under-

going a phase change, the last term representing a heat

source (for oqF=ot > 0, heat sink for oqF=ot < 0) due to

the phase change. This equation, deduced from Eq. (1)

without making any assumption, is complete inasmuch

as Eq. (1) accounts for the terms important for the

energy balance.

Now, neglecting the term ~//G grad hG (that is, sup-

posing ~//G ? grad hG, or ~//G ¼ 0, or grad hG ¼ 0) and,

in addition, setting

~//F ¼ �DF grad qF; ð11Þ

which postulates the film flow to occur by diffusion only,

DF being a diffusion coefficient, we findX
k

qk
ohk
ot

¼ divðk grad T Þ þ DF grad qF � grad hF

þ ðhG � hFÞ
oqF

ot
: ð12Þ

By the next assumption the relationship grad qF �
grad hF ¼ 0 should hold (which requires grad qF ?
grad hF or grad qF ¼ 0, or grad hF ¼ 0) and obtain

from Eq. (12)

X
k

qk
ohk
ot

¼ divðk grad T Þ þ ðhG � hFÞ
oqF

ot
; ð13Þ

which is the Eq. (1) of Wojcik et al. [1].

On the other hand, setting oqF=ot ¼ 0 or hG� hF ¼ 0,

which implies no phase change accompanied by a ther-

mal effect, Eq. (12) delivers

X
k

qk
ohk
ot

¼ divðk grad T Þ þDF grad qF � grad hF

ð14Þ

which is the Eq. (4) in the paper under the discussion.

As is obvious from the derivations above, Eq. (13)

disregards the (sensible) enthalpy change of the phases

flowing in the control volume, whereas Eq. (14) accounts

for only the (sensible) enthalpy change of the film phase;

the latter disregards even the latent heat arising from the

phase change. Consequently, neither Eq. (13) nor Eq.

(14) (that is, none of Eqs. (1) and (4) in [1]) does satisfy

the first principle of thermodynamics. The conclusions

of Wojcik et al. regarding their Eq. (4) that should obey

the conservation law (at the boundary and in the whole

system), sensitively contradict the present finding.

The last expression in the chain of our derivation that

is consistent regarding the energy conservation is the Eq.

(10). It also satisfies the boundary conditions at the in-

terface (Eq. (3) in [1]) which follows from the above Eq.

(4) by taking the interface to be a mathematical surface

allowing us to omit all the capacity terms. Then, our Eq.

(4) reduces to

divðk grad T � h~//Þ ¼ div ðk grad T � ðhG~//G þ hF~//FÞÞ
¼ 0 ð15Þ

or, by involving the Gauss theorem, toZ
A
ððk grad T � h~//Þ � d~AAÞ ¼ 0 ð16Þ

where the surface A encloses the interface. If the inte-

grand does not change over the interface, the integration

Nomenclature

A surface

D mass diffusivity

h specific enthalpy

k thermal conductivity

~qq heat flux vector

t time

T temperature
~// mass flux vector

e source

q mass density

Indices

F adsorbed phase (film)

G bulk phase (gas)

k phase k
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may at once be performed. The same immediately fol-

lows also from Eq. (15).
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